Xuedong LIU

Xuedong LIU

Professor

Office: JSCBB C318
Office Phone: 303 735 6161

Lab: JSCBB C355
Lab Phone: 303 492 3804
Fax: 303 492 5894

Group Website: Liu Lab Group Website
Email: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Ph.D.: University of Wisconsin-Madison, 1994
Postdoctoral Fellow: NIH Fellow at Whitehead Institute/MIT, 1995-1998
DOD/US Army Breast Cancer Research Postdoctoral Fellow at Whitehead Institute, 1998-2000

Research Profile

Ongoing projects include the following:

1) Systems biology of TGF-β signaling in normal and cancer cells
2) Chemical biology and biochemistry of the ubiquitin system

3) Mps1 kinase and spindle checkpoint signaling
4) Cis-regulatory transcriptional regulation


Systems biology of TGF-β signaling in normal and cancer cells


We aim to understand the role of transforming growth factor-
β (TGF-β) signaling in normal and cancer cells. TGF-β is a multi-functional cytokine responsible for regulating growth and differentiation of a wide variety of cell types and tissues. It is a potent inhibitor of normal epithelial cell proliferation and possesses tumor suppressing activity. The majority of human tumors are of epithelial origin and their proliferation is no longer inhibited by TGF-β. This usually arises either from a loss of key signaling molecules in the TGF-β signal transduction pathway (e.g., TGF-β receptors), or from activation of oncogenes. TGF-β can positively regulate expression of many tumor suppressor genes which cause the cell to stop proliferation and yet negatively regulate expression of many proto-oncogenes/oncogenes which promote cell cycle progression. The action of TGF-β in normal epithelial cells is to downshift the engine that drives cell proliferation by shifting the balance of the activity of the oncogene and tumor suppressor gene.

TGF-β signals via two receptor Ser/Thr protein kinases, termed type I and type II TGF-β receptors. The type II receptor phosphorylates and activates the type I receptor, which then phosphorylates Smad2 or Smad3 within their C-terminal Ser-Ser-X-Ser motifs. Once activated, Smad2 or Smad3 associate with the shared signaling molecule Smad4, translocate to the nucleus and in concert with additional transcription factors alters the transcription of a large repertoire of genes. Although several key downstream targets that transduce the TGF-β signals from the cell surface to the nucleus have been identified, it remains to be determined how TGF-β can mediate myriad cellular responses and regulate so many important physiological processes. To address how TGF-β signaling could mediate such diverse effects, we use the two following approaches: 1) Find as yet unidentified molecules that may mediate diverse functions, and 2) understand how the TGF-β network behaves as a system, which may identify how known network components interact to produce unexpected emergent behavior. The principal methods used to achieve these aims include cDNA library screening for genes that mediate TGF-β resistance (Erickson et al., MBC 2009), purification and identification by mass spectrometry of protein complexes associated with well-established signaling transducers (Knuesel et al., 2003, Zhu et al., 2007) and computational modeling of TGF- β/Smad signaling dynamics (Clarke et al., 2006; Clarke et al. 2008; Clarke et al. 2009; Zi et al. 2011).


xuedong_liu_fig1



Chemical biology and biochemistry of the ubiquitin system

Proteins in the cell are subject to diverse covalent modifications that serve to alter their activity, localization, or turnover. Such modifications include ubiquitination and covalent attachment of ubiquitin-like molecules (e.g., SUMO or small ubiquitin-like modifier). We initially became interested in how these modifications regulate cell cycle proteins that could disrupt TGF-
β signaling (Liu et al., 2000). We subsequently found further interplay between TGF-β signaling and protein degradation mechanisms (Wang et al., 2004, MacDonald et al., 2004). More recently, we have sought to determine the biochemical mechanisms by which E3 ligases mediate ubiquitination of their substrates (Wang et al., 2004, Ungermannova et al., 2005, Wang et al., 2005; Wang et al. 2006). We continue to pursue these studies using structural and biochemical techniques.  We are mainly interested in two SCF type of ubiquitin ligases (SCFSkp2 and SCFFbx4; Zeng et al. 2010).  More recently we developed high throughput screening assays for identifying small molecule inhibitors of SCF E3 ligase in an effort to curb excessive proteolysis of p27Kip1 which is a tumor suppressor protein perturbed in a variety of human tumors. In addition, studies were done to establish the functional importance of post-translational modifications on the activity of transcription factors. Here, muscle differentiation, which is largely driven through transcriptional regulation, was used as a model system (Riquelme et al., 2006, 2 separate publications).

 

slide2


Mps1 kinase and spindle checkpoint signaling


A hallmark of tumor cells is an inability to control their proliferation, which implies that these cells are capable of bypassing cell cycle checkpoints and regulation by tumor suppressor signaling pathways.  Aberrant chromosome segregation generates aneuploid cells and genome instability, which has been postulated to be a major mechanism for tumorigenesis.  Aneuploidy is primarily caused by errors during mitosis.  In normal cells, correct segregation of chromosomes is ensured by an evolutionarily conserved surveillance signal transduction pathway called the mitotic spindle checkpoint   TTK/Mps1, a dual specificity protein kinase, has emerged as a master regulator of mitosis and an upstream component of spindle checkpoint signaling pathway.  Our previous work led to identification of Smad proteins as substrates for Mps1 in mitosis (Zhu et al. 2007).  Recently we solved the crystal structure of the Mps1 kinase domain in collaboration with Ming Lei's group (Wang et al. 2008).  We demonstrated that autophosphorylation of Mps1 is a priming mechanism for Mps1 activation and critical for kinetochore targeting (Wang et al. 2008, Xu et al. 2009; Sun et al. 2010; Zhang et al. 2011).  Currently we are interested in understanding how Mps1 kinase is turned on and off in a cell cycle dependent manner and how its activity is perturbed in tumor cells to weaken the spindle checkpoint.  

 

slide3

 

 

 

Cis-regulatory transcriptional regulation

Genome sequencing has revealed the basic molecular blueprint for diverse organisms. How such sequences give rise to the development and physiology of such organisms is of great interest. Many processes are regulated at the transcriptional level, which are mediated by transcription factor proteins that bind specific and distinct DNA sequences in the promoter and enhancer regions of genes. Predicting which transcription factors bind the promoters of genes of interest is crucial for understanding transcriptional regulation. We have developed a suite of computational tools,
called GeneACT, for studying global transcriptional regulation (Cheung et al. 2007).  We have used these tools to identify transcription factors important for mediating myogenic differentiation and TGF-β-induced gene responses (Cheung et al., 2007; Barthel et al. 2008).

 

 

Selected Publications

 

1.            Zi, Z., D.A. Chapnick, and X. Liu, Dynamics of TGF-beta/Smad Signaling. FEBS Lett, 586 (2012) 1921–1928.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=22710166

 

2.            Ungermannova, D., S.J. Parker, C.G. Nasveschuk, W. Wang, B. Quade, G. Zhang, R.D. Kuchta, A.J. Phillips, and X. Liu, Largazole and Its Derivatives Selectively Inhibit Ubiquitin Activating Enzyme (E1). PLoS One, 2012. 7(1): p. e29208.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=22279528

 

3.            Ungermannova, D., S.J. Parker, C.G. Nasveschuk, D.A. Chapnick, A.J. Phillips, R.D. Kuchta, and X. Liu, Identification and Mechanistic Studies of a Novel Ubiquitin E1 Inhibitor. J Biomol Screen, 2012. 17(4): p. 421-34.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=22274912

 

4.            Liu, X. and M. Winey, The Mps1 Family of Protein Kinases. Annu Rev Biochem, 2012. 81: p. 561-85.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=22482908

 

5.            Zi, Z., Z. Feng, D.A. Chapnick, M. Dahl, D. Deng, E. Klipp, A. Moustakas, and X. Liu, Quantitative Analysis of Transient and Sustained Transforming Growth Factor-Beta Signaling Dynamics. Mol Syst Biol, 2011. 7: p. 492.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=21613981

 

6.            Zhang, X., Q. Yin, Y. Ling, Y. Zhang, R. Ma, Q. Ma, C. Cao, H. Zhong, X. Liu, and Q. Xu, Two Lxxll Motifs in the N Terminus of Mps1 Are Required for Mps1 Nuclear Import During G(2)/M Transition and Sustained Spindle Checkpoint Responses. Cell Cycle, 2011. 10(16): p. 2742-50.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=21778823

 

7.            He, J., J. Ye, Y. Cai, C. Riquelme, J.O. Liu, X. Liu, A. Han, and L. Chen, Structure of P300 Bound to Mef2 on DNA Reveals a Mechanism of Enhanceosome Assembly. Nucleic Acids Res, 2011. 39(10): p. 4464-74.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=21278418

 

8.            Chapnick, D.A., L. Warner, J. Bernet, T. Rao, and X. Liu, Partners in Crime: Tgf-Beta and Mapk Pathways in Cancer Progression. Cell Biosci, 2011. 1(1): p. 42.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=22204556

 

9.            Zhong, J., X. Liu, and A. Pandey, Effects of Transmembrane and Juxtamembrane Domains on Proliferative Ability of Tslp Receptor. Mol Immunol, 2010. 47(6): p. 1207-15.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=20096461

 

10.          Zeng, Z., W. Wang, Y. Yang, Y. Chen, X. Yang, J.A. Diehl, X. Liu*, and M. Lei*, Structural Basis of Selective Ubiquitination of Trf1 by Scffbx4. Dev Cell, 2010. 18(2): p. 214-25.  * Corresponding authors.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=20159592

 

11.          Sun, T., X. Yang, W. Wang, X. Zhang, Q. Xu, S. Zhu, R. Kuchta, G. Chen, and X. Liu, Cellular Abundance of Mps1 and the Role of Its Carboxyl Terminal Tail in Substrate Recruitment. J Biol Chem, 2010. 285(49): p. 38730-9.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=20884615

 

12.          Clarke, D.C. and X. Liu, Measuring the Absolute Abundance of the Smad Transcription Factors Using Quantitative Immunoblotting. Methods Mol Biol, 2010. 647: p. 357-76.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=20694679

 

13.          Chapnick, D.A. and X. Liu, Analysis of Ligand-Dependent Nuclear Accumulation of Smads in Tgf-Beta Signaling. Methods Mol Biol, 2010. 647: p. 95-111.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=20694662

 

14.          Xu, Q., S. Zhu, W. Wang, X. Zhang, W. Old, N. Ahn, and X. Liu, Regulation of Kinetochore Recruitment of Two Essential Mitotic Spindle Checkpoint Proteins by Mps1 Phosphorylation. Mol Biol Cell, 2009. 20(1): p. 10-20.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18923149

 

15.          Wang, W., Y. Yang, Y. Gao, Q. Xu, F. Wang, S. Zhu, W. Old, K. Resing, N. Ahn, M. Lei*, and X. Liu*, Structural and Mechanistic Insights into Mps1 Kinase Activation. J Cell Mol Med, 2009. 13(8B): p. 1679-94. *corresponding authors.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19120698

 

16.          Granovsky, A.E., M.C. Clark, D. McElheny, G. Heil, J. Hong, X. Liu, Y. Kim, G. Joachimiak, A. Joachimiak, S. Koide, and M.R. Rosner, Raf Kinase Inhibitory Protein Function Is Regulated Via a Flexible Pocket and Novel Phosphorylation-Dependent Mechanism. Mol Cell Biol, 2009. 29(5): p. 1306-20.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19103740

 

17.          Erickson, R.A. and X. Liu, Association of V-Erba with Smad4 Disrupts Tgf-Beta Signaling. Mol Biol Cell, 2009. 20(5): p. 1509-19.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19144825

 

18.          Clarke, D.C., M.L. Brown, R.A. Erickson, Y. Shi, and X. Liu, Transforming Growth Factor Beta Depletion Is the Primary Determinant of Smad Signaling Kinetics. Mol Cell Biol, 2009. 29(9): p. 2443-55.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19223462

 

19.          Nasveschuk, C.G., D. Ungermannova, X. Liu, and A.J. Phillips, A Concise Total Synthesis of Largazole, Solution Structure, and Some Preliminary Structure Activity Relationships. Org Lett, 2008. 10(16): p. 3595-8.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18616341

 

20.          Guo, X., D.S. Waddell, W. Wang, Z. Wang, N.T. Liberati, S. Yong, X. Liu, and X.F. Wang, Ligand-Dependent Ubiquitination of Smad3 Is Regulated by Casein Kinase 1 Gamma 2, an Inhibitor of Tgf-Beta Signaling. Oncogene, 2008. 27(58): p. 7235-47.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18794808

 

21.          Guo, X., A. Ramirez, D.S. Waddell, Z. Li, X. Liu, and X.F. Wang, Axin and Gsk3- Control Smad3 Protein Stability and Modulate Tgf- Signaling. Genes Dev, 2008. 22(1): p. 106-20.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18172167

 

22.          Clarke, D.C. and X. Liu, Decoding the Quantitative Nature of Tgf-Beta/Smad Signaling. Trends Cell Biol, 2008. 18(9): p. 430-42.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18706811

 

23.          Barthel, K.K. and X. Liu, A Transcriptional Enhancer from the Coding Region of Adamts5. PLoS ONE, 2008. 3(5): p. e2184.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18478108

 

24.          Zhu, S., W. Wang, D.C. Clarke, and X. Liu, Activation of Mps1 Promotes Transforming Growth Factor-Beta-Independent Smad Signaling. J Biol Chem, 2007. 282(25): p. 18327-38.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17452325

 

25.          Zhang, L., L. Ding, T.H. Cheung, M.Q. Dong, J. Chen, A.K. Sewell, X. Liu, J.R. Yates, 3rd, and M. Han, Systematic Identification of C. Elegans Mirisc Proteins, Mirnas, and Mrna Targets by Their Interactions with Gw182 Proteins Ain-1 and Ain-2. Mol Cell, 2007. 28(4): p. 598-613.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18042455

 

26.          Cheung, T.H., K.K. Barthel, Y.L. Kwan, and X. Liu, Identifying Pattern-Defined Regulatory Islands in Mammalian Genomes. Proc Natl Acad Sci U S A, 2007. 104(24): p. 10116-21.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17535887

 

27.          Riquelme, C., K.K. Barthel, X.F. Qin, and X. Liu, Ubc9 Expression Is Essential for Myotube Formation in C2c12. Exp Cell Res, 2006. 312(11): p. 2132-41.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16631162

 

28.          Riquelme, C., K.K. Barthel, and X. Liu, Sumo-1 Modification of Mef2a Regulates Its Transcriptional Activity. J Cell Mol Med, 2006. 10(1): p. 132-44.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16563226

 

29.          Clarke, D.C., M.D. Betterton, and X. Liu, Systems Theory of Smad Signalling. Syst Biol (Stevenage), 2006. 153(6): p. 412-24.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17186703

 

30.          Cheung, T.H., Y.L. Kwan, M. Hamady, and X. Liu, Unraveling Transcriptional Control and Cis-Regulatory Codes Using the Software Suite Geneact. Genome Biol, 2006. 7(10): p. R97.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17064417

 

31.          Wang, W., L. Nacusi, R.J. Sheaff, and X. Liu, Ubiquitination of P21cip1/Waf1 by Scfskp2: Substrate Requirement and Ubiquitination Site Selection. Biochemistry, 2005. 44(44): p. 14553-64.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16262255

 

32.          Ungermannova, D., Y. Gao, and X. Liu, Ubiquitination of P27kip1 Requires Physical Interaction with Cyclin E and Probable Phosphate Recognition by Skp2. J Biol Chem, 2005. 280(34): p. 30301-9.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15980415

 

33.          Knuesel, M., H.T. Cheung, M. Hamady, K.K. Barthel, and X. Liu, A Method of Mapping Protein Sumoylation Sites by Mass Spectrometry Using a Modified Small Ubiquitin-Like Modifier 1 (Sumo-1) and a Computational Program. Mol Cell Proteomics, 2005. 4(10): p. 1626-36.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16020427

 

34.          Kfir, S., M. Ehrlich, A. Goldshmid, X. Liu, Y. Kloog, and Y.I. Henis, Pathway- and Expression Level-Dependent Effects of Oncogenic N-Ras: P27(Kip1) Mislocalization by the Ral-Gef Pathway and Erk-Mediated Interference with Smad Signaling. Mol Cell Biol, 2005. 25(18): p. 8239-50.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16135812

 

35.          Wang, W., D. Ungermannova, J. Jin, J.W. Harper, and X. Liu, Negative Regulation of Scfskp2 Ubiquitin Ligase by Tgf-Beta Signaling. Oncogene, 2004. 23(5): p. 1064-75.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=14676846

 

36.          Wang, W., D. Ungermannova, L. Chen, and X. Liu, Molecular and Biochemical Characterization of the Skp2-Cks1 Binding Interface. J Biol Chem, 2004. 279(49): p. 51362-9.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15452136

 

37.          Royer, Y., C. Menu, X. Liu, and S.N. Constantinescu, High-Throughput Gateway Bicistronic Retroviral Vectors for Stable Expression in Mammalian Cells: Exploring the Biologic Effects of Stat5 Overexpression. DNA Cell Biol, 2004. 23(6): p. 355-65.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15231069

 

38.          Macdonald, M., Y. Wan, W. Wang, E. Roberts, T.H. Cheung, R. Erickson, M.T. Knuesel, and X. Liu, Control of Cell Cycle-Dependent Degradation of C-Ski Proto-Oncoprotein by Cdc34. Oncogene, 2004. 23(33): p. 5643-53.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15122324

 

39.          Liang, M., Y.Y. Liang, K. Wrighton, D. Ungermannova, X.P. Wang, F.C. Brunicardi, X. Liu, X.H. Feng, and X. Lin, Ubiquitination and Proteolysis of Cancer-Derived Smad4 Mutants by Scfskp2. Mol Cell Biol, 2004. 24(17): p. 7524-37.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15314162

 

40.          Wang, W., D. Ungermannova, L. Chen, and X. Liu, A Negatively Charged Amino Acid in Skp2 Is Required for Skp2-Cks1 Interaction and Ubiquitination of P27kip1. J Biol Chem, 2003. 278(34): p. 32390-6.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12813041

 

41.          Knuesel, M., Y. Wan, Z. Xiao, E. Holinger, N. Lowe, W. Wang, and X. Liu, Identification of Novel Protein-Protein Interactions Using a Versatile Mammalian Tandem Affinity Purification Expression System. Mol Cell Proteomics, 2003. 2(11): p. 1225-33.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12963786

 

42.          Wan, Y., X. Liu, and M.W. Kirschner, The Anaphase-Promoting Complex Mediates Tgf-Beta Signaling by Targeting Snon for Destruction. Mol Cell, 2001. 8(5): p. 1027-39.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11741538

 

43.          Liu, X., Y. Sun, R.A. Weinberg, and H.F. Lodish, Ski/Sno and Tgf-Beta Signaling. Cytokine Growth Factor Rev, 2001. 12(1): p. 1-8.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11312113

 

44.          Fu, M., J. Zhang, X. Zhu, D.E. Myles, T.M. Willson, X. Liu, and Y.E. Chen, Peroxisome Proliferator-Activated Receptor Gamma Inhibits Transforming Growth Factor Beta-Induced Connective Tissue Growth Factor Expression in Human Aortic Smooth Muscle Cells by Interfering with Smad3. J Biol Chem, 2001. 276(49): p. 45888-94.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11590167

 

45.          *Blobe, G.C., X. Liu*, S.J. Fang, T. How, and H.F. Lodish, A Novel Mechanism for Regulating Transforming Growth Factor Beta (Tgf-Beta) Signaling. Functional Modulation of Type Iii Tgf-Beta Receptor Expression through Interaction with the Pdz Domain Protein, Gipc. J Biol Chem, 2001. 276(43): p. 39608-17. *Equal contributions.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11546783

 

46.         Xiao, Z., X. Liu, and H.F. Lodish, Importin Beta Mediates Nuclear Translocation of Smad 3. J Biol Chem, 2000. 275(31): p. 23425-8.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10846168

 

47.          Xiao, Z., X. Liu, Y.I. Henis, and H.F. Lodish, A Distinct Nuclear Localization Signal in the N Terminus of Smad 3 Determines Its Ligand-Induced Nuclear Translocation. Proc Natl Acad Sci U S A, 2000. 97(14): p. 7853-8.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10884415

 

48.          Liu, X., Y. Sun, M. Ehrlich, T. Lu, Y. Kloog, R.A. Weinberg, H.F. Lodish, and Y.I. Henis, Disruption of Tgf-Beta Growth Inhibition by Oncogenic Ras Is Linked to P27kip1 Mislocalization. Oncogene, 2000. 19(51): p. 5926-35.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11127824

 

49.          Liu, X., S.N. Constantinescu, Y. Sun, J.S. Bogan, D. Hirsch, R.A. Weinberg, and H.F. Lodish, Generation of Mammalian Cells Stably Expressing Multiple Genes at Predetermined Levels. Anal Biochem, 2000. 280(1): p. 20-8.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10805516

 

50.          Wells, R.G., L. Gilboa, Y. Sun, X. Liu, Y.I. Henis, and H.F. Lodish, Transforming Growth Factor-Beta Induces Formation of a Dithiothreitol-Resistant Type I/Type Ii Receptor Complex in Live Cells. J Biol Chem, 1999. 274(9): p. 5716-22.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10026191

 

51.          Sun, Y., X. Liu, E. Ng-Eaton, H.F. Lodish, and R.A. Weinberg, Snon and Ski Protooncoproteins Are Rapidly Degraded in Response to Transforming Growth Factor Beta Signaling. Proc Natl Acad Sci U S A, 1999. 96(22): p. 12442-7.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10535941

 

52.          Sun*, Y., X. Liu*, E.N. Eaton, W.S. Lane, H.F. Lodish, and R.A. Weinberg, Interaction of the Ski Oncoprotein with Smad3 Regulates Tgf-Beta Signaling. Mol Cell, 1999. 4(4): p. 499-509.  *Equal contributions.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10549282

 

53.          Constantinescu, S.N., X. Liu, W. Beyer, A. Fallon, S. Shekar, Y.I. Henis, S.O. Smith, and H.F. Lodish, Activation of the Erythropoietin Receptor by the Gp55-P Viral Envelope Protein Is Determined by a Single Amino Acid in Its Transmembrane Domain. Embo J, 1999. 18(12): p. 3334-47.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10369674

 

54.          Kuo, J.S., M. Patel, J. Gamse, C. Merzdorf, X. Liu, V. Apekin, and H. Sive, Opl: A Zinc Finger Protein That Regulates Neural Determination and Patterning in Xenopus. Development, 1998. 125(15): p. 2867-82.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9655809

 

55.          Hua, X., X. Liu, D.O. Ansari, and H.F. Lodish, Synergistic Cooperation of Tfe3 and Smad Proteins in Tgf-Beta-Induced Transcription of the Plasminogen Activator Inhibitor-1 Gene. Genes Dev, 1998. 12(19): p. 3084-95.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9765209

 

56.          Constantinescu, S.N., H. Wu, X. Liu, W. Beyer, A. Fallon, and H.F. Lodish, The Anemic Friend Virus Gp55 Envelope Protein Induces Erythroid Differentiation in Fetal Liver Colony-Forming Units-Erythroid. Blood, 1998. 91(4): p. 1163-72.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9454745

 

57.          Liu, X., Y. Sun, S.N. Constantinescu, E. Karam, R.A. Weinberg, and H.F. Lodish, Transforming Growth Factor Beta-Induced Phosphorylation of Smad3 Is Required for Growth Inhibition and Transcriptional Induction in Epithelial Cells. Proc Natl Acad Sci U S A, 1997. 94(20): p. 10669-74.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9380693

 

58.          Johnston, S.D., X. Liu, F. Zuo, T.L. Eisenbraun, S.R. Wiley, R.J. Kraus, and J.E. Mertz, Estrogen-Related Receptor Alpha 1 Functionally Binds as a Monomer to Extended Half-Site Sequences Including Ones Contained within Estrogen-Response Elements. Mol Endocrinol, 1997. 11(3): p. 342-52.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9058380

 

59.          Liu, X. and J.E. Mertz, Sequence of the Polypyrimidine Tract of the 3'-Terminal 3' Splicing Signal Can Affect Intron-Dependent Pre-Mrna Processing in Vivo. Nucleic Acids Res, 1996. 24(9): p. 1765-73.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8649998

 

60.          Liu, X. and J.E. Mertz, Hnrnp L Binds a Cis-Acting Rna Sequence Element That Enables Intron-Dependent Gene Expression. Genes Dev, 1995. 9(14): p. 1766-80.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7542615

 

61.          Liu, X. and J.E. Mertz, Polyadenylation Site Selection Cannot Occur in Vivo after Excision of the 3'-Terminal Intron. Nucleic Acids Res, 1993. 21(22): p. 5256-63.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8255783

 

Book Edited

 

Computational Modeling of Signaling Networks

 

Computational Modeling of Signaling Networks

 

Series: Methods in Molecular Biology, Vol. 880

Liu, Xuedong; Betterton, Meredith D. (Eds.)

2012, 2012, XIV, 327 p. 75 illus., 10 in color.

A product of Humana Press
Hardcover
Information

ISBN 978-1-61779-832-0

http://www.springer.com/life+sciences/cell+biology/book/978-1-61779-832-0